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Decomposition of Interfacial Crack Driving Forces
in Dissimilar Joints

Yun-Jae Kim and
(GKSS Research Center. Institute of Materials Research, Germany)

Hyungyil Lee*
(Sogang University)

This paper presents a framework how to estimate crack driving forces in terms of crack-tip
opening displacement and J-integral for mismatched dissimilar joints with interface cracks. The
mismatch in elastic, thermal, and plastic hardening properties is not considered, but the
mismatch in plastic yield strengths is emphasized here. The main outcome of the present work
is teat the existing methods to estimate crack driving forces for homogeneous materials can be
used with slight modification. Such modification includes (i) mismatch- corrected limit load'
solutions, and (ii) evaluating the contribution of each material in dissimilar joints to the total
crack driving force, which depends on the strength mismatch of the dissimilar joints.
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1. Introduction

Application of fracture mechanics concept to
structural assessment procedures requires crack
driving force estimates in terms of either crack-tip
opening displacement (CTOD) or J-integral.
For homogeneous cracked structures, procedures
to estimate crack driving forces are well estab
lished (ETM, 1997; Kumar et al., 1981).

In many technical areas, two or more dissimilar
materials are joined together, either by bonding
(solid state) or welding (fusion process) in order
to achieve functional requirements, such as metal-

. metal and metal-ceramic bimaterial joints. For
such materials and material systems, interfaces are
intrinsic, and the structural performance would be
generally limited by fracture along the interface.
Thus crack driving force estimates for such dis
similar joints would be necessary for the assess
ment of the integrity of mechanical structures as
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well as for the transferability of laboratory test
results to structural components. Unlike for
homogeneous materials, mismatch in elastic prop
erties as well as plastic properties will affect crack
driving forces. Many works have been reported,
but mainly concentrate on crack-tip stress fields
in either elastic or small scale yielding (Williams,
1959; Symington, 1987; Rice, 1987; Shih and
Asaro, 1988, 1989; Shih et al., 1991; Zywicz and
Parks, 1989, 1992: Lee et al., 1999).

The present work provides a framework to
estimate crack driving forces for mismatched
dissimilar joints. Our goals have the following
two folds. The first one is to answer whether
existing procedures (E;TM, 1997; Kumar et al.,
1981) could be used with a possible minor modi
fication. For dissimilar joints, this slight modifi
cation means that it is be necessary to separate the
crack driving force in each material. Thus the
second goal is to provide a rule to separate the
driving force.

2. Assumption and Analysis

2.1 Assumption
A bimaterial joint of two elastic-plastic mate-



Decomposition of Interfacial Crack Driving Forces in Dissimilar Joints 31

Lower Strength

(LS)

(a)

HS aNT

LS a Lr

(b)

Fig. 1 (a) A mismatched dissimilar joint with an
interface crack, and (b) material model
assumed in the present work

rials bonded together is considered, with an inter
face crack lying along the interface of two mate
rials (Fig. I). Two materials in such dissimilar
joints generally have different thermal, elastic,
and plastic strength as well as hardening prop
erties. For simplicity, this paper concentrates on
two elastic-perfectly plastic materials having the
same elastic and thermal properties but different
yield strengths. as depicted in Fig. I. This model
both pratically simulates the welding part of low
hardening materials and allows distinct analysis
of the obtained results. Throughout the paper. the
material properties for the lower strength (LS)
material and the higher strength (HS) material
will be denoted by the subscripts Land H, respec
tively. The LS material has a yield strength of

(fLY, whereas the HS material has of (fHY' The
strength mismatch then can be characterized by
the mismatch factor M defined as

M= (fHY (~l) (I)
(fLY

Note two limiting' values of M: M = I corre
sponds to the homogeneous specimen made of the
LS material, and M =00 to the bimaterial speci
men where the HS material is elastic.

The attention is confined here to plane strain
conditions and to apparent mode I loading condi
tions. Note that, even though the apparent load
ing is mode I, the local crack-tip region can have
mixed mode conditions due to the strength mis-

match.

2.2 Finite element (FE) analyses
The results given in the subsequent sections

were extracted from the 2-D plane strain, elastic
plastic FE analyses where materials were modeled
as isotropic elastic-plastic materials which obey
nonhardening 12 flow theory. A small geometry
change continuum FE model was employed. To
avoid problems associated with incompressibility,
8-node reduced integration elements (element
type CPE8R from the ABAQUS library, 1995)
were employed. More detailed information on the
FE mesh will be given in the corresponding
sections.

3. Small Scale Yielding (SSY)

3.1 FE mesh and boundary conditions
The modified boundary layer (MBL) formula

tion based on the two-term Williams' expansions
(Parks, 1992) was employed. Due to elastic
homogeneity of bimaterial systems under consid
erations, the displacement boundary conditions
consistent with those for homogeneous materials
are applied to the outermost boundary of FE
model:

Ui=lJl !fi.·fi(8, II) + Ir gi(8, II) (2)

Here E is the Young's modulus and II is the
Poisson's ratio. fi(8, II) are the angular varia
tions of the elastic singular field, and gi (8, II) are
the angular variations of the displacements due to
the T -stress term which is the nonsingular stress
acting parallel to the crack flank. The crack-tip is
surrounded circumferentially by total forty-eight
fans of elements (twenty-four fans each in the
upper and the lower part), and the size of the
smallest element at the crack-tip is about 0.3 X

10-5R, where R denotes the radius of the outer
most radius of the FE mesh. Results are obtained
by systematically varying the values of M and of
T, while keeping K 1 constant. For all computa
tions, the maximum radius of plastic zone from
the crack-tip was not more than 0.2 x 10-2R,
which ensures the SSY conditions.
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3.2 Plastic zone
Consider a pure K 1 loading (zero T -stress)

with varying M. Writing the maximum radius of
the plastic zone in each side of the two materials

as (rph =AL(Kr! C1LY) 2 and (rp) H=AH(Kr! C1HY) 2,

the effect of M on AL and AH is shown in Fig. 2
(a). In the FE model, the plastic zone in each
material was defined as the zone where the equiv
alent Mises stress C1e exceeds 99% of the yield
strength of the respective material, i.e., C1e~0.99

C1LY and C1e~ 0.99 C1HY, respectively. As M
increases, A L increases slightly from -0.15 to
-0.18, whereas AH decreases rapidly from -0.15
to O. Thus the effect of M on plastic zone size is
negligible in the LS material but is significant in
the HS material.

To investigate the effect of the T-stress, two
limiting values of M are considered: M = 1 and
M =00. The T-stress in the subsequent sections

is normalized with respect to C1LY'

r= T / C1LY (3)

Figure 2 (b) compares the dependence of ilL on t:

for M = 1 and M = 00. The results suggest that the
plastic zone size in the LS material of dissimilar
joints remains almost constant regardless of M,
while it is dominantly affected by T -stress. Of
course, its size in the HS material strongly
depends on M, as shown in Fig. 2(a).

3.3 Crack-tip opening displacement
(CTOD)

Due to the strength mismatch, the LS material
experiences more intensive crack-tip opening
than the HS material, which gives an asymmetric
crack-tip opening profile. Figure 3 (a) shows the
variations of CTOD (Ot) with M for the pure K1

loading (zero T-stress). With increasing M, Ot
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Fig.3 Variation of crack tip opening displacement
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Fig.2 Variation of plastic zone size with (a) the
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Fig. 4 A framework to estimate crack driving forces for dissimilar joints in SSY
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Fig. 5 Contribution of the LS material to the total
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the individual contribution of the HS and LS

material to 8fl
, OfIIH and 8flldFig. 4), would be

more relevant. Let's introduce the parameter
measuring the relative contribution of the LS
material to the total CTOD:

8= OflldM I (4)

For instance, when M = I, 8 =0.5. On the other
hand, in the limiting case of M = 00, 8 = 1. Thus
(J should be a function of M. Fig. 5 suggests a
form of (J in terms of M. The value of (J increases
linearly from 0.5 to I for M ranging from 1.0 to

1.8. When M> 1.8, 8;;:; I which means that the
total CTOD is essentially due to the contribution
of the LS material.

increases in the LS material but decreases in the

HS material. One notable point is that, as M
increases, 8t in the LS material increases by up to
50% even though the total 8t decreases by 25%.

Figure 3 (b) compares the variations of 8t with T
for bimaterials (M =(0) with those for homoge

neous materials (M= I). It shows that the magni
tudes of 8t for bimaterials with M =00 are very

similar to those for homogeneous materials (M = I) .

3.4 Crack driving force estimates in SSY
The results presented in the previous sections

provide the strategy to estimate crack driving
force in terms of CTOD in SSY, as schematically
shown in Fig. 4. For instance, suppose that a

crack length a(and the corresponding stress inten
sity factor K, ) is given for a certain dissimilar
joint with the strength mismatch M. Then infor

mation on the plastic zone size for homogeneous
materials (e.g., see Hauf et al., 1995) can be
directly used to determine the plasticity-corrected

crack length, aeff and the corresponding stress
intensity factor, Keff • Then the elastic component
of the CTOD, Ofl, can be determined from Keff ,

using the appropriate formula for homogeneous

materials. Note that the resulting value of 811 is
the total value representing the sum of the contri
butions of the LS and HS materials (Fig. 4).

For dissimilar joints, however, knowledge on
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Fig. 7 Variation of D (%) with a/ W for various
mismatched dissimilar joints. For the defini
tion of D (%), see the text

4.2 Limit loads
For homogeneous materials, the limit loads are

known for the specimens shown in Fig. 6 (Miller,
1988). The strength mismatch M affects the limit
load for dissimilar joints. We introduce the per
centage difference of the limit load between dis
similar joints with M =00 and homogeneous
materials (M = I) ,

depending on a/ W. In all cases, deformation
boundary conditions are applied to the FE
model, and the magnitude of the applied deforma
tion is made large enough to bring the specimen
to its limiting load state. For all cases considered,
the FE limit load solutions for homogeneous
specimens differ from the known slip line field
(SLF) solutions by less than 1%, which provide a
confidence of the present FE calculations.

DEC(T)

SEC(B

Fig. 6 Plane strain dissimilar specimens considered
in this work

4. Full Yielding (FY)

where F YM denotes the generalized limit load for
dissimilar joints. Figure 7 shows the variation of
D (%) with a/ W for various specimens. A
remarkable point is that the effect of M on the
limit loads is not so significant. For many cases
such as C (T), SEC (T) and DEC (T), M does not
affect the limit loads at all. For bending speci
mens such as SEC (B) and SEC (PB), the effect is
still slight, i.e., M increases the limit loads but
not more than 6%. The most significant effect
occurs for CC (T) specimens where M can

4.1 FE analyses
Eight types of plane strain dissimilar specimens

for typical mode I fracture toughness testing are
considered here, as depicted in Fig. 6. For a given
specimen type, variables investigated are a/ W
and M. We performed limit analyses of the FE
model of bimaterial specimens shown in Fig. 6.
Materials were modeled as isotropic elastic-plas
tic materials which obey nonhardening 12 flow
theory. A small geometry change continuum FE
model was employed. The number of elements
and nodes in the typical FE mesh ranges about
1000 to 1600 elements and 3100 to 5000 nodes,

D(%) FyM(M=oo) - FyM(M= I)
FyM(M=I)

(5)
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Fig. 8 The effect of the strength mismatch M on the
plastic 1]-factor

increase the limit load by up to 30%. Closed form
of limit load solutions for mismatched dissimilar
joints in terms of a/ Wand M are compiled
elsewhere (ETM, 1997: Lee and Kim, 1998).
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Fig. 9 Variation of the J-integral for mismatched
dissmilar SEC(T) speciments

Such fact can be most vividly visualized from
Fig. 9 where the J-integrals extracted from the
FE analysis of a bimaterial with hardening expo
nent n= 10 joined to the elastic material are
compared for two limiting SEC (T) dissimilar
joints: M = I and M =00. In the FE analysis, two
different contours for the I -integral, I and Ii.
were employed, as shown in Fig. 9 (a). Note that
I reflects the total I -integral whereas [: does the
contribution of the LS material. As shown in Fig.
9 (b), when one looks at the total J value, increas
ing M provides a shielding effect, i.e., for a given
load, the I -integral decreases as M increases.
However, when the I-integral only in the LS

(7)

4.3 J-IntegraI and CTOD
The limit load solutions also provide the plas

tic TJ-factors, TJPI> for determining the plastic
component of the J-integral, I Pl

JPl - • UP!
- TJP! B ( W - a)

where UPl measures the plastic area under load
load line displacement curve, and Band (W - a)

denotes the specimen thickness and the remaining
ligament, respectively. According to the load
separation principle, the dependence of TJpl on the
specimen type and the crack depth can be found
from the limit load solutions:

Where PL denotes the limit load being a function
of a/ W. Figure 8 shows the variation of TJpl with
a/ W for two typical specimens, CC (T) and SEC
(PB), with various values of M. The results in
Fig. 8 suggest that the effect of M on TJpl is
negligible, particularly for deep cracks (0.45::;:
a/ W ::;:0.55).Thus, as far as the testing method is
concerned, the I-integral evaluation procedures
for homogeneous specimens can be directly used
for any dissimilar joints.

However, due to the strength mismatch, it is not
difficult to imagine that the contribution of each
material in dissimilar joints to JPI is not equal.
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material, [c- is looked at, it is not a function of M
(Fig. 9 (c) ). This provides an important key to
estimate crack driving forces for dissimilar joints
in full yielding.

loading, the values of Stld St and hiI sharply
increases from 0.5 to I for M ranging from 1.0 to

1.2. When M>I.2, OtldSt and IdI~1 which
means that the total CTOD is essentially due to
the contribution of the LS material.
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Fig. 11 A framework to separate the crack driving
forces for mismatched dissimilar joints in
FY
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Fig. 10 Schematic illustration of separation of crack
driving forces

4.4 Separation of J -Integral and CTOD
In the previous sections, it was suggested that

separation of the crack driving force may provide
meaningful results. Again, introduce two parame

ters, Stlds, and hiI, measuring the relative
contribution of the LS material (Fig. 10). It is

obvious that, when M = I, StldSt = hiI =0.5.
On the other hand, in the limiting case of M =00,
Stld8t=IdI=1. Thus StldSt and hlI should
be a function of M. Figure II suggests a form of

8tlds, and hiI in terms of M. For tension
loading, the values of 8tld8t and IdI increases
almost linearly from 0.5 to I for M ranging from

I to 2. When M>2.0, StldSt and IdI=1 which
means that the total CTOD is essentially due to
the contribution of the LS material. For bending
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Fig. 12 A framework to estimate crack driving forces for mismatched dissimilar joints in FY
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4.5 Crack driving force estimates in FY
The results presented in the previous sections

provide the strategy to estimate crack driving
force in FY, as schematically shown in Fig. 12.
For instance, suppose a dissimilar joint is given.
We can obtain driving forces based on the proce
dures for homogeneous materials made of the LS
material. Of course, in this stage, we have to use
the mismatch-corrected limit loads presented in
Sec. 4.2. The half of the obtained driving forces
are those for the LS material. To obtain the total
magnitude of the driving forces, he uses the sepa
ration rule (Fig. II) which is a function of M.

5. Conclusions

This paper presents the strategy for estimating
crack driving forces for mismatched dissimilar
joints, in terms of the CTOD and J-integral, The
main outcome of the present work is that the
existing methods to estimate crack driving forces
for homogeneous materials, such as Engineering
Treatment Model (ETM) or EPRI, can be used
with slight modification. Such modification
includes (i) mismatch-corrected limit load solu
tions, and (ii) evaluating the contribution of each
material in dissimilar joints to the total crack
driving forces which depends on the strength
mismatch of the dissimilar joints.

Detailed formulations to evaluate crack driving
forces are not given in the present work, which
can be found easily (ETM, 1997; Kumar et al.,
1981). Moreover, the present work did not con
sider the mismatch in elastic and thermal prop
erties. It is sufficient to say at the moment that
such mismatch affects the crack driving forces
only in small scale yielding, but not in full yield
ing. The effect of elastic and thermal mismatch on
stress intensity factors has been discussed by 0'
Dowd et al. (1992). Some aspects of the effect of
thermal mismatch has been also discussed by
Dreier and Schmauder (1993).
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